
Lecture IV: Chiral controversies

Michael Creutz

BNL

Four closely related questions:

- Could $m_u = 0$ have any fundamental meaning?
- Is topological susceptibility a physical observable?
- Is \overline{MS} valid outside of perturbation theory?
- Do rooted staggered fermions make sense?

The answer to all four is NO!

tied to gauge field topology and the chiral anomaly

Some background

Consider two flavor QCD with light but non-degenerate masses

pseudoscalar operators

$$\overline{u}\gamma_5 u$$

$$\overline{d}\gamma_5 d$$

$$\overline{u}\gamma_5 d \sim \pi_+$$

$$\overline{d}\gamma_5 u \sim \pi_-$$

Helicity conservation naively suggests mixing of

$$\overline{u}\gamma_5 u = \overline{u}_L \gamma_5 u_R + \overline{u}_R \gamma_5 u_L$$

with

$$\overline{d}\gamma_5 d = \overline{d}_L \gamma_5 d_R + \overline{d}_R \gamma_5 d_L$$

• suppressed by $m_u m_d$

Wrong: the anomaly couples u and d through $F\tilde{F}$

- strongly mixes $\overline{u}\gamma_5 u$ and $\overline{d}\gamma_5 d$ topology induces the effective "t'Hooft vertex"
- physical $\eta' \sim \overline{u} \gamma_5 u + \overline{d} \gamma_5 d$ not a pseudo-Goldstone boson

$$M_{\eta'} \sim \Lambda_{qcd} + O(m_u + m_d)$$

 η' also contains glue: $F_{\mu\nu}\tilde{F}_{\mu\nu}$

Leaves the orthogonal combination $\pi_0 \sim \overline{u} \gamma_5 u - \overline{d} \gamma_5 d$

$$M_{\pi_0}^2 \sim \frac{m_u + m_d}{2}$$

isospin breaking suppressed to higher order

$$M_{\pi_0}^2 = M_{\pi_+}^2 - O((m_u - m_d)^2)$$

Fix m_d , vary m_u

$$M_\pi^2 \propto \frac{m_u + m_d}{2} + O(m_q^2)$$

$$M_{\eta'} \sim \Lambda_{qcd}$$

With isospin broken

$$M_{\pi_{\pm}}^2 - M_{\pi_0}^2 \propto (m_d - m_u)^2$$

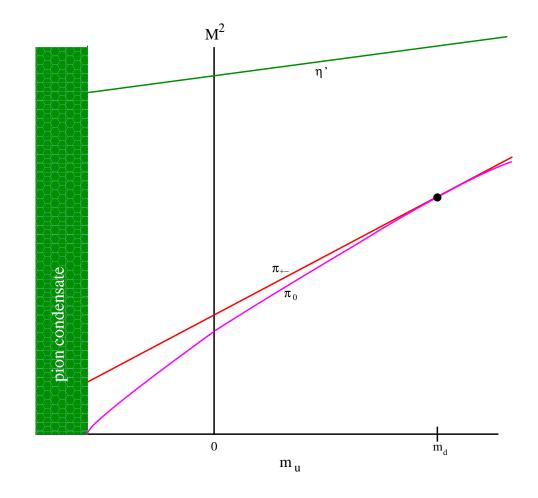
 η' , π_0 , glueballs all mix

Mass gap survives at $m_u = 0$

The Dashen phenomenon

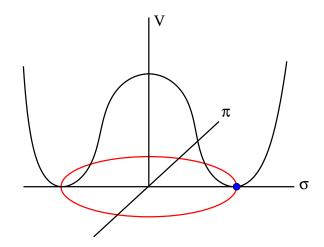
No singularity at $m_u = 0$

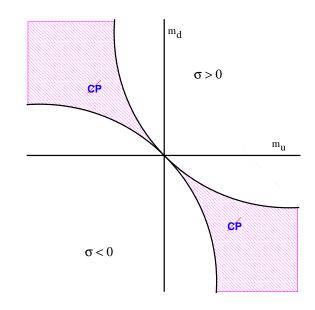
- extrapolate to negative m_u
- $M_{\pi_0}^2$ can go negative
- pion condensate forms

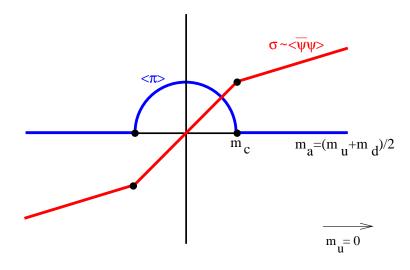

$$\langle \pi_0 \rangle \neq 0$$

CP broken

• formally at $\Theta = \pi$

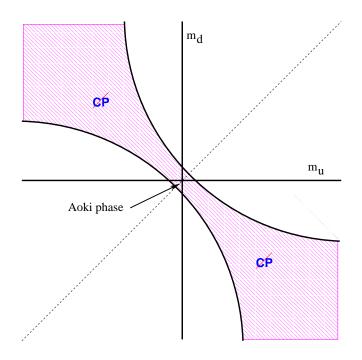

$$\prod_{q} m_q < 0$$

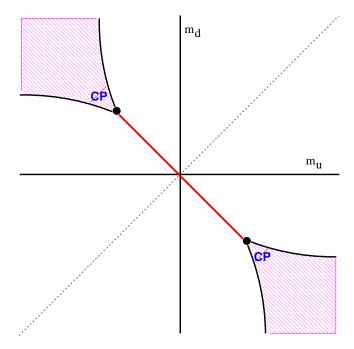

Dashen 1971



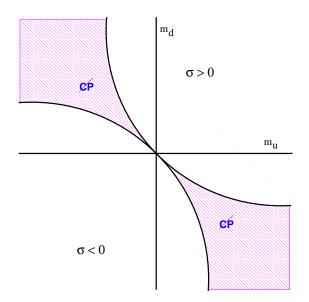
Ising-like transition at $m_u < 0$

- order parameter $\langle \pi_0 \rangle \neq 0$
- breaks CP spontaneously




Structure manifest in both "linear" and "nonlinear" sigma models

CP breaking phase related to the Aoki phase and Wilson lattice artifacts

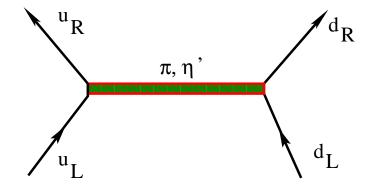

CP breaking in isospin limit

First order alternative

Which alternative remains controversial can depend on lattice action

Second order transition at non-vanishing m_u and m_d of opposite sign

long distance physics without small Dirac eigenvalues

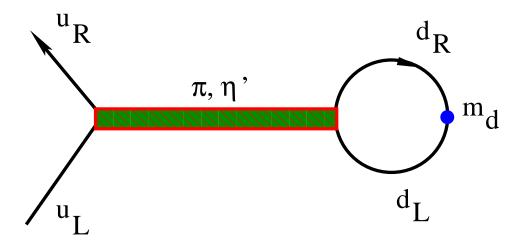

No structure at $m_u=0$ when $m_d \neq 0$

• no long distance physics despite possible small Dirac eigenvalues Question: Can any experiment tell if $m_u=0$?

The $m_u = 0$ issue

Eta prime and neutral pion: distinct mixtures of $\overline{u}u$, $\overline{d}d$, and glue

consider quark-quark spin flip scattering



- anomaly: π_0 and η' not degenerate
- four point function $\langle \overline{u}_L u_R \ \overline{d}_L d_R
 angle$ does not vanish

Helicity-flip quark-quark scattering does not vanish in the chiral limit axial anomaly ⇔ " 't Hooft vertex"

Now turn on a small d quark mass

• closing d loop induces $u_L u_R$ mixing

Non-zero d quark mass induces an effective mass for the u quark

Non-perturbative effects renormalize $\frac{m_u}{m_d}$

quark mass ratios not renormalization group invariant

$$\frac{m_u}{m_d} \to \frac{m_u + \epsilon m_d}{m_d + \epsilon m_u}$$

Effect automatically included in lattice simulations

Old point

- Georgi, McArthur, 1981 (unpublished)
- Choi, Kim, Sze, 1988 (PRL)
- Banks, Nir, Seiberg, 1994 (conference proceedings)
- MC, 2003 (unpublished)
- MC, 2004 (PRL)

Intense consternation from the perturbative community

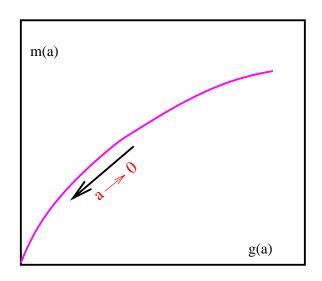
- effect not seen perturbatively, i.e. in the \overline{MS} scheme
- consequences

mass renormalization is not flavor blind mass independent regularization is tricky inherent ambiguities defining $m_u=0$

 \overline{MS} is only a perturbative regulator

• when $m_u \neq m_d$

while matching perturbative lattice masses to \overline{MS} is OK matching to non-perturbative lattice results is not valid!


Specific critiques

Complaint 0

• m=0 corresponds to the bare mass

Response

- the bare mass always vanishes
- RG: $m_0 \propto g_0^{\gamma_0/\beta_0} (1 + O(g_o^2))$ $\beta_0 = \frac{11 - 2n_f/3}{(4\pi)^2}$ $\gamma_0 = \frac{8}{(4\pi)^2}$

- asymptotic freedom: $g_0 \to 0 \Rightarrow m_0 \to 0$
- must define mass at some finite scale

Complaint 1:

Use a mass independent regularization

$$a\frac{dm_i}{da} = \gamma(g)m_i \Rightarrow \frac{m_i}{m_j} = \text{constant}$$

Response:

- ullet allowed, but obscures above off-diagonal m_d effect on m_u
- no guarantee that $\frac{m_i}{m_j}$ universal between schemes
- lattice is not a mass independent scheme

unclear how to do matching

Complaint 2:

- Do matching at 100 GeV
- instantons exponentially suppressed and irrelevant

Response:

 the lattice simulations are not done at miniscule scales instanton effects must be included

• $1/g^2 \sim \log(\mu) \sim \log(1/a)$

exponential suppression in $1/g^2 \ \to {\rm power}$ in scale μ

Effect controlled by

$$\bullet M_{\eta'} - M_{\pi_0}$$

- also proportional to m_d-m_u
- estimate at scale $\mu=2~{\rm GeV}$

$$\Delta m_u(\mu) \sim \frac{(M_{\eta'} - M_{\pi_0}) \ (m_d - m_u)}{\mu} = O(1 \ {
m MeV})$$

same magnitude as quoted "results"

Note

$$M_{\eta'} \propto \Lambda_{qcd} \propto \mu \ g^{-\beta_1/\beta_0^2} \ e^{-1/(2\beta_0 g^2)}$$

comes from non-trival topology

exponential behavior controlled by

$$\frac{1}{2\beta_0g^2}=\frac{8\pi^2}{(11-2n_f/3)g^2}$$
 << $\frac{8\pi^2}{g^2}=$ classical instanton action

topological excitations above quantum, not classical, vacuum

Classical instanton action strongly overestimates suppression

Topological effects are not "soft"

Complaint 3:

• at $m_u = 0$ there is no Θ dependence

Response

- Re m_u and Im m_u are independent parameters
- Re $m_u = 0$ is not RG stable

$$\Theta = \arccos(\operatorname{Im} m_u/\operatorname{Re} m_u)$$

non-perturbative scheme dependence

ullet the strong CP problem only involves ${
m Im}\ m_u$

any real m_u is an equivalent "solution" for strong CP problem

Note:

• rotating all phases into m_u leaves three parameters

Re
$$m_u$$
, Im m_u , m_d

mapping to conventional parameters is singular

$$m_u, m_d, \Theta$$

• no singularity at $m_u = 0$

no natural origin for "polar" coordinates

Polar coordinates should use a natural origin

La Gare de Perpignan, the center of the universe (Dali)

Complaint 4:

• define $m_u = 0$ by vanishing topological susceptibility

Response

- topology has the same scheme dependence
- 1). count small real eigenvalues of the Wilson operator
 How to define "small"?
 At finite cutoff only a minimum, not a zero
- 2). cooling (Wilson flow) to remove short distance fluctuations
 With which action should we cool? How long?
 Can small "instantons" fall through the lattice?
- 3). the overlap operator not unique: "domain wall height"

Note on the "admissibility condition"

• Luscher: if plaquettes restricted $P<\sim.03$ unique continuum continuation of gauge fields instantons cannot collapse, unique winding number

This constraint requires a non-Hermitian Hamiltonian

- $Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} (e^{-aH})^{N_t}$
- Hermitan H implies $\langle \psi | e^{-aH} | \psi \rangle > 0$ for every ψ
- requires plaquette weight to be analytic over the gauge group
- inconsistent with the admissibility constraint

MC, Phys. Rev. D 70, 091501(R) (2004), hep-lat/0409017

Complaint 5:

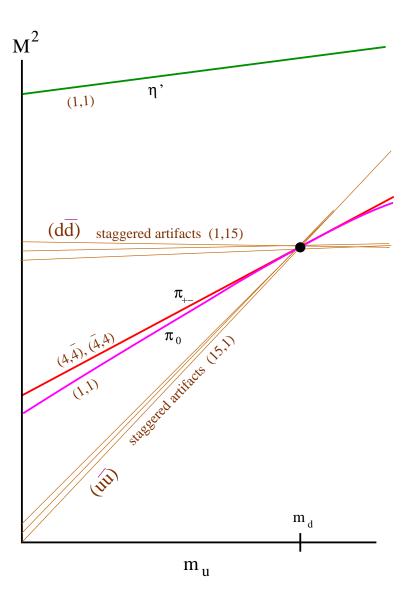
• staggered fermions do have a chiral symmetry at $m_u=0$

Response

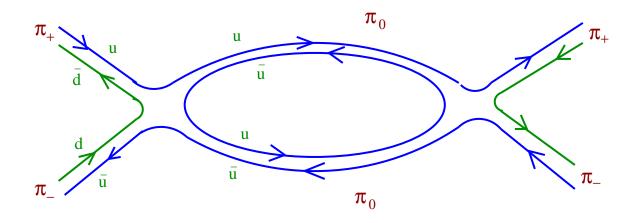
rooted staggered fermions are not QCD

15 taste non-singlet $\overline{u}\gamma_5 u$ pseudoscalars with $M^2 \sim m_u$

not at physical $M_\pi^2 \sim (m_u + m_d)/2$

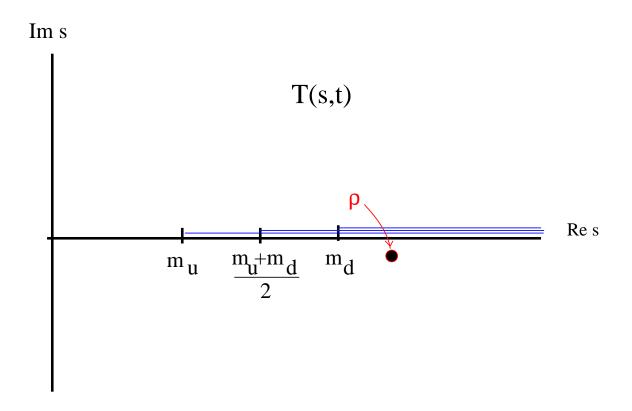

will appear in scattering processes

Four "tastes" per flavor


- symmetry $(SU(4)_u, SU(4)_d)$
- well separated spurious states

$$\overline{u}_i\gamma_5u_j$$
 and $\overline{d}_i\gamma_5d_j$
15 with $M^2\sim m_u$
15 with $M^2\sim m_d$

• one massless at $m_u = 0$ required by symmetry


Scattering will create the unphysical mesons

Unphysical thresholds appear in T(s,t)

• locations controlled by m_u and m_d separately

not only the average quark mass

Incorrect analytic structure

widely separated cuts at unphysical locations

Spurious states cannot mix

independent taste symmetries for up and down quarks

Note:

- Rooting OK for replicated Wilson fermions
- additive mass shift breaks spurious symmetry

Staggered quarks are not replicated fermions

chiral symmetry is "flavored" (tasted?)

four tastes are not equivalent

rooting mixes inequivalent fields

- taste breaking is not the issue
- the chiral limit is not the issue

Summary

Careful chiral analysis resolves several controversies

 $m_u = 0$, rooting, topological susceptibility

Perturbation theory can mislead

- mass mixing effects absent in perturbation theory
- inappropriate to match lattice and perturbative masses

No structure at $m_u = 0$ when $m_d \neq 0$

- $m_u = 0$ not an appropriate solution to the strong CP problem
- ambiguity in defining topology

Interesting phase structure with negative mass quarks

possible pion condensation